
A Component-Based, Distributed Object Services Architecture
for a Clinical Workstation

Henry C. Chueh M.D. M.S., Wayne F. Raila, John J. Pappas, Mark Ford,
Polina Zatsman, John Tu M.D., G. Octo Barnett, M.D.

Laboratory of Computer Science, Massachusetts General Hospital

Attention to an architectural framework in the
development of clinical applications can promote
reusability of both legacy systems as well as newly
designed software. We describe one approach to an
architecture for a clinical workstation application
which is based on a critical middle tier ofdistributed
object-oriented services. This tier ofnetwork-based
services providesflexibility in the creation ofboth the
user interface and the database tiers. We developed
a clinical workstation for ambulatory care using this
architecture, defining a number of core services
including those for vocabulary, patient index,
documents, charting, security, and encounter
management. These services can be implemented
through proprietary or more standard distributed
object interfaces such as CORBA and OLE. Services
are accessed over the network by a collection ofuser
interface components which can be mixed and
matched to form a variety of interface styles. These
services have also been reused with several
applications based on World Wide Web browser
interfaces.

INTRODUCTION

Many clinical applications will ultimately reuse
similar application logic in order to perform a
common task. An example is the need to perform a
"patient lookup" in virtually every clinical
application. Traditional approaches to solving this
problem range from using a database-centric model
where each application uses its own program code to
access the same central database, to application-
centric models where modular code, usually in the
form of subroutines, is reused in every application.
The advent of client-server architectures which
divide an application into at least two potential parts
have highlighted the issue of where to locate
application logic - on the client or on the server.'
There has been recent focus on insulating database
implementations from client applications. This
approach can be effective for easing the migration
from legacy systems.2 Insulation of content can
occur when data from the database is translated into a
common clinical content format before presentation
to the client.3 Insulation can also be promoted
through a technical infrastructure of a common
software "bus" providing application services.4'5
Like a hardware bus, a software bus provides a
standard interface to lower-level functionality.
Frameworks promoting horizontal integration across
applications through a layered, component-based
approach have also been described.56'7 A component

is a reusable software module which has two critical
features: 1) it has an explicit interface which hides
the complexity of the software code within, and 2) it
is built using a standard software architecture which
allows components to interact with each other, even
if the programming languages used within two
components are different. Architectures which
promote this interoperability include emerging
standards such as the Object Management Group's
Common Object Request Broker Architecture
(CORBA) and Microsoft's Object Linking and
Embedding (OLE) specifications. New technologies
and tools facilitate a services-based approach which
allows an application to be built in multiple tiers: an
explicit user interface, a middle tier of network-based
application services, and a database tier. We have
taken an approach which combines all of these
concepts -- common data formats, distributed
services, component-based applications -- and
implemented an architecture to build an outpatient
clinical workstation for patient records.

METHODS

Scenarios of outpatient encounters were described in
writing and used as the basis for identifying potential
objects and processes. This technique has been
described in many object-oriented analysis methods.8
Objects which represent core clinical entities such as
patient, practitioner, and encounter were identified
first. These entities have been identified in many
other representations of clinical domains, and
potential standards were reviewed for comparison
and generation of a full set of object attributes.9
Relationships between these clinical entities were
established; for example, "one patient can have many
encounters", or "one or more practitioners
participates in an encounter".

Additional objects were defined to allow for clinician
observations to be recorded as part of the electronic
patient record. Comprehensive efforts to model
clinical observations and concepts for the medical
record have not yet led to a clear consensus on how
such entities should be modeled.3'0 However, there is
an increasing emphasis towards structured records,
which we also favor. We focused on defining objects
which correspond to the typical recording habits of
practitioners. For example, visit notes often have
loose narrative sections such as "Reason for visit", or
"Plans", leading to the definition of a Narrative
object class, while a more structured entity such as

0195-4210/96/$5.00 0 1996 AMIA, Inc. 638

clinical problem is identified as a separate Problem
class. Next, a collection of coordinating or
"manager" objects were defined as objects which
would provide services to manipulate the clinical
data objects. These manager objects are derived
from a need to model functional processes rather than
from a need to represent clinical data. For instance,
the PatientlndexManager object provides a method to
perform a patient lookup and create a Patient object,
and a DocumentManager object provides a method to
retrieve a list of Document objects for a given
Patient.

Legacy systems and databases were reviewed for
their data content. A large clinical results repository
is maintained on a Tandem mainframe computer at
the Massachusetts General Hospital (MGH), the site
of this development. Identifying which objects
needed to be constructed from this database guided
the development of services such as the TestManager
and the PatientIndexManager.

An application framework was defined which
supports a component-based approach to constructing
the user interface displays. Display components were
then selected for construction and created to utilize
the core applications services and data objects. We
chose to implement the architecture and application
using a distributed object-oriented development
environment from Forte Software. This general type
of environment has been well-described." Network-
based services created with this development
environment can be brokered through proprietary as
well as evolving standard object interfaces such as
CORBA and OLE. The workstations are Pentium-
based PCs, and middle tier servers are a combination
of Unix and Windows NT servers. Underlying
databases are Tandem's Non-Stop SQL and Oracle
(Figure 1).

RESULTS

Application of our methods resulted in a clinical
workstation for ambulatory patient records which
utilizes a collection of distributed, network-based
object services as core application services. These

major services enforce application logic and mediate
between the database and the client. Some core
services and our component-based approach towards
the utilization of these services are described here.

Objects and services
We found a clear distinction in our architecture
between "data objects" and objects destined to
become services ("service objects"). Data objects
such as Problem (subclass of Observation) consist of
mostly data attributes, have few methods, and store
actual patient data. Figure 2 describes briefly the
attributes of the Problem class; attributes above the
line are common to all Observations, those below are
specific to the Problem subclass. Service objects such
as EncounterManager consist primarily of methods,
have few attributes, and do not maintain any patient
data or state. The data objects we defined are part of
a shallow inheritance hierarchy, while the service
objects do not participate in any inheritance. In
general, service objects act on and manage data
objects, and coordinate processes with other services.
These services can enforce business policies at a
broad level which is beyond the scope of any single
data object. A number of core services for patient
records were defined (Table 1).

Figure 2. Problem class (subclass of Observation)

Data objects

Person
Patient
Practitioner

Encounter
Observation

Narrative
Problem
Medication
Allergy
Test

Document
Problem list

Service objects
PatientIndexManager
EncounterManager
PatientChartManager
DocumentManager
EnrollmentManager
TestManager
SecurityManager
SessionManager
VocabularyManager

Table 1. A selection of some major data objects and
services. Subclasses are indented.

639

Problem: Observation
dateTimeNoted (when observed)
author (who is observing)
concept (controlled vocabulary code)
patient (patient identification)
sensitivity (level of confidentiality)
draftStatus (draft, preliminary, or final)
thread (links to previous Observ.)
dateOfOnset (when problem started)
dateOfResolution (when problem is resolved)
comment (descriptive text/note)

Document and chart services
The DocumentManager and PatientChartManager
services form the centerpiece of structured data entry
and data views. Practitioners enter data through the
creation of visit documents. The document object
allows a flexible mix of structured and unstructured
data. This is achieved by a document which has
multiple sections, some of which are more structured
(e.g., Problems) than others (e.g., Narrative History).
While the client application must know the definition
of the Document class in order to display document
objects to the clinical user, it does not need to
understand details of how to retrieve or save them.
The DocumentManager has methods to retrieve
existing documents, and to create and save new ones.

The PatientChartManager provides summary views
of the patient chart. For example, GetProblemListO
and GetAllergyListo are two typical methods. While
the DocumentManager provides the traditional
encounter-based view of chart documents, this
service summarizes data across visits and documents.
This allows clinical data entered as documents to be
filtered into many alternative views, and help
eliminate redundant data entry. For example, when
the clinician saves a document which contains new
problems, these problems are retrieved automatically
by the PatientChartManager as part of the problem
list. In this way, the problem list is automatically
generated from the entry of visit notes (Figure 3).

Vocabulary services
Distributed vocabulary servers and services have
been described both theoretically and practically.'2"13
We also defined a specific vocabulary service which
provides a number of critical functions: 1) Real-time
lookup of concepts - user enters a phrase and a list of
potential matches are retrieved from the vocabulary
server, 2) Coding of structured information entered
as part of a document, and 3) translation of coded
information among different nomenclatures using the
UMLS Metathesaurus. By incorporating a vocabulary
concept as an attribute of almost all data objects,

services can utilize this coded information to enforce
specific application behavior. For example, when the
same clinical Problem is noted as part of many visit
notes for one patient, but even by different authors,
the PatientChartManager keeps these problems
together in a single thread, much like discussion
threading in e-mail discussion groups.

Security service
The security service's central role is the authorization
for use of all middle layer services. We have adopted
a Kerberos approach. Kerberos is a security model
developed to address network-based client server
computing. It requires the user to authenticate once
and obtain a ticket, and use that ticket to authorize
with a security service every time an application
service is used. We defined user roles with specific
privileges. For example, a medical assistant can view
the problem list, but cannot create a new document.

Display components
The user interface was developed in a component-
based fashion. Each component utilizes middle tier
services to retrieve and save the data needed for
display to the user. Over a dozen component types
have been created so far, and include a many list
viewers (e.g., problem, allergy, medication,
procedure, past medical history, encounter lists),
several lab test displays, and a document view. Each
of these components is designed to work
independently within the application framework,
allowing us to build an interface editor which allows
an analyst to mix and match components to design an
interface style without programming. These styles are
maintained in the database, and each user gets a
specific style when logging on to the application.
The flexibility of this model allows us to rapidly
define different visual placements of the same patient
chart data for different clinical practices. This was
intended to allow a specialist's view to be
significantly different from a primary care view (e.g.,
cardiologists wanted cardiac procedures prominently
displayed, while internists relegated the procedures to
a secondary view). We have found that there are
preferences for differing chart styles within a
specialty (Figure 4).

Implementation and performance
We have implemented this architecture in a clinical
workstation for patient records at several MGH
primary care sites, and in one specialty site,
Neurology. Over 50 users now use the system with a
different application interface style at each site.
These styles were created by an analyst and a
clinician in under two hours each. Access to the
distributed services from workstations has proved
robust, with a stable network being a minimum
requirement. Performance of this architecture which
has an additional layer of abstraction is good. Typical
screens with several display components are shown
in 1-2 seconds. Access of clinical results through the
middle layer TestManager service to the Tandem
mainframe clinical repository also performs well with
response times which rival and even surpass the
native terminal interface to the Tandem.

640

Client application interface

Doumet Polem I
Editor

U component U
L _

User saves
document User
including retrievep
problems documer

,Document Middle PatientChart
Manager Tir Manager

i Mana er Servieces Mana er i

Clinical record database

Figure 3. Interaction between user interface
components and services

User
retrieves

problem list

B:A PAT CAR .OPN.DIS..
4moo 4lmos. 4moa dsys S4days.

b. -

,, .p ,b Mo..' :,:: NW.

Co New
* 0 probable con eave headfolure
b* alnant oisn drom

my* eis mon
m sm"

t pnrnurl .d

0 corontuyartew am.

"w S Cardic

Plans
.v WormnSeon)

Alrgmis .I-Sensitivi
* penkleln allrgy

I tm rawer

IlerSac ISensRIvlSe

DISCUSSION

Using a distributed services architecture has led to
flexibility in application design because the client
application is uncoupled from common application or
"business" services. Services can be implemented
once for use by many applications. Changes to
clinical application logic (as opposed to interface
behavior) can be changed once in a network service
without needing to propagate a new application or
services to all client workstations.

Network-based services can also be distributed over a
many small, inexpensive servers, reducing potentially
the overall cost of deploying applications. Moreover,
a service-based architecture can be scaled up
smoothly: we have added additional middle tier
servers and replicated services onto these machines
without having to decommission older servers.
Client applications can be routed to the most
available service on any middle tier server to perform
load balancing. This architecture does depend on a
robust network, which is a general requirement for all
client-server architectures. Since there can be an

increased number of points of failure with many
application servers, requests for services are brokered
intelligently, or "failed-over", to active servers when
a targeted server fails.

A major advantage of the loose coupling between the
client application and the services layer is the ability
to utilize new application paradigms. Our
component-based approach is one example, while
another is the World Wide Web (WWW) and the
Internet. Others have already shown that existing
systems can be leveraged using WWW technology,
where changes on network servers are available
immediately to all client browsers.'4"15 In two
different WWW projects, colleagues in our
laboratory have been able to take advantage of the
distributed middle tier services we have deployed. In
one project, a WWW application uses the existing
PatientlndexManager and TestManager services to
provide a referring physician's interface into the
MGH clinical repository. A simple TCP/IP sockets-
based HyperText Transer Protocol (HTTP) adapter
interfaces with the distributed object services.
Application programmers needed no knowledge of

641

probate congestve hearttaiklre
* mIgnu nouroloepc syndrome
* * myocardal infarctlon
16 acute siusitis

pneumonia
* coronrwyarterydisease

- 0 Cardiac

I days

DispoltNon andPlana
(No btmnaon)b)

I

Figure 4. Same patient, two user interface styles with different display components for a patient summary view

I

I..Procedures

0 Now
- 0 colonoscopy

0 Negadve wept fbr smal ntemal
hemonWids. [U-Mar-l 996-NQpphyll

corona(y Miss
n Tdple byposs. in Mg. performed in

Vermorit. [27-Mor-1996 Nouphyll

I

4--- I - --- 1-- - -

.7. :.

::. .:.: '. l.:
..,

the Tandem system which houses the repository. In
other collaborative work, a WWW application
created by investigators at another instution
retrieves clinical data from both the Tandem and
Oracle repositories at MGH through our distributed
services.' In this project we accept HL7 formatted
requests to the services, and translate the objects
retrieved into HL7 replies.

Distributed, object-oriented technologies are still
evolving. Until clear standards in the health care
domain emerge, systems including ours will use
somewhat proprietary implementations of this
infiastructure.5'7 As standards mature for technical
interfaces such as CORBA and OLE, and
content/messaging standards such as HL7, the ability
to utilize this architecture using commercial tools
should expand rapidly. We have implemented
component-based, distributed services now to
explore the issues that this approach raises. As more
sites move towards an open architecture, and secure
access issues are addressed, there is potential for
collaborative, wide area networked models of care as
the middle tier becomes increasingly distributed. In
particular, services such as distributed guidelines
support may have broad appeal.'6

CONCLUSION

The definition of network-based, distributed
application services has had a major impact on the
design and development of our clinical workstation.
We have found that the architecture can be
implemented with existing commercial development
tools. The distributed services model can support
clinical applications, and is particularly powerful
where services provide differing clinical views of the
same underlying database. It can also create clean
interfaces to legacy systems and provide a potential
migration strategy. This architectural approach has
led us to define a number of core clinical services as
well as adopt a specific data model for clinical
objects. The flexibility of the network-based service
layer has allowed others to explore quickly the
development of other clinical applications using
WWW and Internet development technology.

Acknowledgments

Special thanks to Fareeda Osman, Mary Morgan,
Rick Cooper, Kevin Smith, Dan Salo, Margaret
Moran, Vivian Gainer, and Yan Hoi Lee. This work
was supported in part by grant LM05854 and training
grant LM7092 from the National Library of
Medicine, as well as grants from the Hewlett-Packard
Corp.

References

1. Chueh HC, Barnett GO. Client-Server,
Distributed Database Strategies in a Healthcare
Record System for a Homeless Population.
JAMIA. 1994;1: 186-198.

2. Lemaitre D, Sauquet D, Fofol I, Tanguy L, Jean
FC, Degoulet P. Legacy systems: managing

evolution through integration in a distributed and
object-oriented environment. In Gardner RM, ed.
Proc 19k SCAMC. JAMIA. 1995; 132-136.

3. Dor6 L, Lavril M, Jean FC, Degoulet P. An
object oriented computer-based patient record
reference model. In Gardner RM, ed. Proc 19th
SCAMC. JAMIA. 1995; 377-381.

4. Kuihn K, Reichert M, Nathe M, Beuter T, Dadam
P. An infrastructure for cooperation and
communication in an advanced clinical
information system. In: Ozbolt JG, ed. Proc 18'
SCAMC. JAMIA. 1994;518-523.

5. Jean FC, Jaulent MC, Coignard J, Degoulet P.
Distribution and communication in software
engineering environments: application to the
HELIOS software bus. In: Ozbolt JG, ed. Proc
1itSCAMC. JAMIA. 1994;150-154.

6. Deibel SR, Grenes RA. An Infrastructure for
the Development of Health Care Information
Systems from Distributed Components.
<http://dsg.harvard.edulpublic/arachne/arachne_
overview.html>

7. Van Mulligan EM, Timmers T, Brand J, Comet
R, Van den Heuvel F, Kalshoven M, Van
Bemmel JH. HERMES: A Health Care
Workstation Integration Architecture. J of Bio-
Med Comp. 1994;34:267-275.

8. Coad P, Yourdon, E. Object-Oriented Analysis,
2nd edition. Prentice Hall; 1991.

9. HISPP/MSDS Joint Working Group for a
common data model. Trial use standard for
medical data interchange-information model
methods. IEEE P1157.1, draft 1. 1994.

10. Rector AL, Nowlan WA, Kay S, Goble CA,
Howkins TJ. A framework for modeling the
electronic medical record. Methods Inf Med,
1993;32(2):109-19.

11. Nicol JR, Wilkes T, Manola FA. Object
orientation in heterogenous distributed
computing systems. IEEE Comp 1993;26(6):57-
67.

12. Rocha RA, Huff SM, Haug PJ, Warner HR.
Designing a controlled medical vocabulary
server: the VOSER project. Comp Bio Res.
1994;27(6):472-507.

13. Fonnan BH, Cimino JJ, Johnson SB, et al.
Applying a controlled medical terminology to a
distributed, production clinical information
system. In Gardner RM, ed. Proc l9th SCAMC.
JAMIA. 1995; 421-425.

14. Cimino JJ, Socratous S, Clayton PIP. Internet as
clinical information system: application
development using the World Wide Web.
JAMIA, 1995:2(5):273-284.

15. Kohane IS, Greenspun P, Fackler J, Cimino C,
Szolovits P. Building National Electronic
Medical Record Systems via the World Wide
Web. JAMIA. 1996;3(3):(in publication).

16. Barnes MR, Barnett GO. An architecture for a
distributed guidelines server. In: Gardner RM,
ed. Proc 19 SCAMC. JAMIA. 1995; 233-237.

642

